Training the random neural network using quasi-Newton methods

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Training the random neural network using quasi-Newton methods

Training in the random neural network (RNN) is generally speci®ed as the minimization of an appropriate error function with respect to the parameters of the network (weights corresponding to positive and negative connections). We propose here a technique for error minimization that is based on the use of quasi-Newton optimization techniques. Such techniques o€er more sophisticated exploitation ...

متن کامل

Quasi-Newton Methods for Nonconvex Constrained Multiobjective Optimization

Here, a quasi-Newton algorithm for constrained multiobjective optimization is proposed. Under suitable assumptions, global convergence of the algorithm is established.

متن کامل

Action constrained quasi-Newton methods

At the heart of Newton based optimization methods is a sequence of symmetric linear systems. Each consecutive system in this sequence is similar to the next, so solving them separately is a waste of computational effort. Here we describe automatic preconditioning techniques for iterative methods for solving such sequences of systems by maintaining an estimate of the inverse system matrix. We up...

متن کامل

On the Behavior of Damped Quasi-Newton Methods for Unconstrained Optimization

We consider a family of damped quasi-Newton methods for solving unconstrained optimization problems. This family resembles that of Broyden with line searches, except that the change in gradients is replaced by a certain hybrid vector before updating the current Hessian approximation. This damped technique modifies the Hessian approximations so that they are maintained sufficiently positive defi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Operational Research

سال: 2000

ISSN: 0377-2217

DOI: 10.1016/s0377-2217(99)00482-8